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Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction

Tova Feldmann and Ronnie Kosloff*
Department of Physical Chemistry, The Hebrew University, Jerusalem 91904, Israel

~Received 11 February 2003; published 3 July 2003!

The fundamentals of a quantum heat engine are derived from first principles. The study is based on the
equation of motion of a minimum set of operators, which is then used to define the state of the system. The
relation between the quantum framework and the thermodynamical observables is examined. A four-stroke heat
engine model with a coupled two-level system as a working fluid is used to explore the fundamental relations.
In the model used, the internal Hamiltonian does not commute with the external control field, which defines the
two adiabatic branches. Heat is transferred to the working fluid by coupling to hot and cold reservoirs under
constant field values. Explicit quantum equations of motion for the relevant observables are derived on all
branches. The dynamics on the heat transfer constant field branches is solved in closed form. On the adiabats,
a general numerical solution is used and compared with a particular analytic solution. These solutions are
combined to construct the cycle of operation. The engine is then analyzed in terms of the frequency-entropy
and entropy-temperature graphs. The irreversible nature of the engine is the result of finite heat transfer rates
and frictionlike behavior due to noncommutability of the internal and external Hamiltonians.
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I. INTRODUCTION

Analysis of heat engine models has been a major par
thermodynamic development. For example, Carnot’s eng
preceded the concepts of energy and entropy@1#. Szilard and
Brillouin constructed a model engine that enabled them
resolve the paradox raised by Maxwell’s demon@2,3#. The
subsequent insight enabled the unification of negative
tropy with information. In the same tradition, in the prese
paper, we study a heat engine model with a quantum work
fluid for the purpose of tracing the microscopic origin
friction. The function of a quantum heat engine, as well as
classical counterpart, is to transform heat into useful work
such engines, the work is extracted by an external field
ploiting the spontaneous flow of heat from a hot to a c
reservoir. The present model performs this task by a fo
stroke cycle of operation. All four branches of the cycle c
be described by quantum equations of motion. The ther
dynamical consequences can therefore be derived from
principles.

The present paper lays the foundation for a compreh
sive analysis of a discrete model of a quantum heat engin
brief outline, which has been published, emphasized the
gine’s optimal performance characteristics@4#. It was shown
that the engines power output versus cycle time mimics v
closely a classical heat engine subject to friction. The sou
of the apparent friction was traced back to a quantum p
nomena: the noncommutability of the external control fie
Hamiltonian and the internal Hamiltonian of the workin
medium.

The fundamental issue involved requires a detailed
careful study. The approach followed is to derive the therm
dynamical concepts from quantum principles. The conne
ing bridges are the quantum thermodynamical observab
Following the tradition of Gibbs, a minimum set of obser
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ables is sought, which are sufficient to characterize the
formance of the engine. When the working fluid is in therm
equilibrium, the energy observable is sufficient to complet
describe the state of the system and therefore all other
servables. During the cycle of operation, the working fluid
in a nonequilibrium state. In frictionless engines, where
internal Hamiltonian commutes with the external cont
field, the energy observable is still sufficient to character
the engine’s cycle@5,6#. In the general case, additional var
ables have to be added. For example, in the current mod
set of three quantum thermodynamic observables is suffic
to characterize the performance. With only two addition
variables, the state of the working fluid can be characteri
also. Knowledge of the state is necessary in order to eval
the entropy and the dynamical temperature. These varia
are crucial in establishing a thermodynamic perspective.

The current investigation is in line with previous studi
of quantum heat engines@4–18#. All the studies of first-
principle quantum models have conformed to the laws
thermodynamics. These models have been either continu
resembling turbines@12,16,17#, or discrete as in the presen
model @4,5,10–12#. Surprisingly, the performance characte
istics of the models were in close resemblance to their r
istic counterparts. Real heat engines operate far from
reversible conditions, where the maximum power is
stricted due to finite heat transfer@19#, internal friction, and
heat leaks@20–26#. Analysis of the quantum models of he
engines, based on a first-principle dynamical theory, ena
to pinpoint the fundamental origins of finite heat transf
internal friction, and heat leaks.

Studies of quantum continuous heat engine models h
revealed most of the known characteristics of real engines
accordance with finite-time thermodynamics, the power
ways exhibits a definite maximum@21#, and the performance
has been limited by heat leaks@17#. Finally, indications of
restrictions due to frictionlike phenomena have been in
cated@12#. The difficulty with the analysis is that it is very
©2003 The American Physical Society01-1
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hard to separate the individual contributions in the case
continuous operating engine.

To facilitate the interpretation, a four-stroke discrete e
gine has been chosen for analysis. The cycle of operatio
controlled by the segments of time that the engine is in c
tact with a hot and a cold bath, and by the time inter
required to vary the external field. To simplify the analys
the time segments where the working fluid is in contact w
the heat baths are carried out at constant external field. S
a cycle of operation resembles the Otto cycle, which is co
posed of twoisochoreswhere heat is transferred and tw
adiabatswhere work is done. This simplification allows us
obtain the values of the thermodynamical observables du
the cycle of operation from first principles in closed form

II. QUANTUM THERMODYNAMICAL OBSERVABLES
AND THEIR DYNAMICS

The quantum thermodynamical observables constitu
set of variables, which are sufficient to completely descr
the heat engine performance characteristics as well as
entropy and temperature changes of its working mediu
The analysis of the performance requires a quantum dyna
cal description of the changes in the thermodynamical
servables during the engine’s cycle of operation. The ther
dynamical observables are associated with the expecta
values of operators of the working medium. Using the f
malism of von Neumann, an expectation value of an obse
able ^Â& is defined by the scalar product of the operatorÂ
representing the observable and the density operatorr̂ rep-
resenting the state of the working medium:

^Â&5~Â•r̂!5Tr$Â†r̂%. ~1!

The dynamics of the working medium is subject to t
external change of variables as well as heat transport f
the hot and to the cold reservoir. The dynamics is then
scribed within the formulation of quantum open syste
@28,32#, where the dynamics is generated by the Liouvi
superoperatorL either as an equation of motion for the sta
r ~Schrödinger picture!,

ṙ̂5L~ r̂!, ~2!

or as an equation of motion for the operator~Heisenberg
picture!,

Ȧ̂5L* ~Â!1
]Â

]t
. ~3!

The second part of the right-hand side~rhs! appears since the
operatorÂ can be explicitly time dependent.

A significant simplification is obtained@27# when the fol-
lowing conditions are met.

~a! The operators of interest form an orthogonal setB̂i i.e.,

~B̂i•B̂j !5d ij , ~4!
01610
a

-
is
-
l
,

ch
-

g

a
e
he
.
i-
-

o-
on
-
v-

m
e-
s

whereB̂05 Î is the identity operator. Then, the setB̂i for the
Hilbert space a nd will be used as a basis.

~b! The set is closed to the operation ofL* :

Ḃ̂i5L* ~B̂i!5(
j

l j
i B̂j , ~5!

wherel i
j are scalar coefficients composing the matrixL̃.

~c! The equilibrium density operator is a linear combin
tion of the set

r̂eq5
1

N
Î1(

k
bk

eqB̂k , ~6!

whereN is the dimension of the Hilbert space andbk
eq are the

equilibrium expectation values of operators,^B̂k
eq&.

The operator property of Eq.~5! allows a direct solution
to the Heisenberg equation of motion~3! by diagonalizing
the L̃ matrix, relating observableŝB̂k& at time t to observ-
ables at timet1Dt, that is, b¢(t1Dt)5U(Dt)b¢(t), where
U5eL̃Dt and b¢ is a vector composed from the expectati
values ofB̂k @for an example, cf. Eq.~35!#.

The time-dependent expectation valuesb¢(t) and Eq.~6!
can be employed to reconstruct the density operator

r̂R5
1

N
Î1(

k
bkB̂k , ~7!

where the expansion coefficients becomebk5^B̂k&. Al-
though the setB̂k is not necessarily complete, Eq.~7! will
still be used as a reconstructing method for the density
erator. This reconstructed stater̂R reproduces all observa
tions that are constructed from linear combinations of the
of operatorsB̂k . The reconstruction of the density operat
r̂R means that the dynamics can be solved in the Heisen
frame, Eq.~3!. When the state of the system is required,
example, in entropy calculations~cf. Sec. II B!, the recon-
structed stater̂R is sufficient.

The Liouville operator, Eqs.~2! and~3!, for an open quan-
tum system can be partitioned into a unitary partLH and a
dissipative partLD @28#:

L5LH1LD . ~8!

The unitary part is generated by the HamiltonianĤ:

LH* ~Â!5 i @Ĥ,Â#. ~9!

The condition for a set of operators to be closed underLH*
has been well studied@29#. If the Hamiltonian can be decom
posed to

Ĥ5(
j

hj B̂j , ~10!
1-2



e

m

di

ed
i

ga

-
It,
o
le

an
rg
o

n

s,

he

le
or

d

f

to

the

he

t of

-
-

he

ue

e
the

al

Eq.
of

QUANTUM FOUR-STROKE HEAT ENGINE: . . . PHYSICAL REVIEW E 68, 016101 ~2003!
and the setB̂k forms a Lie algebra@30,31#, i.e., @B̂i ,B̂j#

5(kCij
kB̂k ~the coefficientsCij

k are the structure factors of th
Lie algebra!, then the set is closed underLH* .

For the dissipative Liouville operatorLD , Lindblad’s
form is used@28#:

LD* ~Â!5(
j

F F̂jÂF̂j
†2

1

2
~ F̂jF̂j

†Â1ÂF̂jF̂j
†!G , ~11!

whereF̂j are operators from the Hilbert space of the syste
The conditions for which the setB̂i is closed toLD* have not
been well established. Nevertheless, in the present stu
example, such a set has been found.

A. Energy balance

The energy balance of the working medium is follow
by the changes in time to the expectation value of the Ham
tonian operator. For a working medium, composed of a
of interacting particles, the Hamiltonian is described as

Ĥ5Ĥext1Ĥint . ~12!

Here, Ĥext5v( iĤi is the sum of single-particle Hamilto
nians, wherev5v(t) is the time dependent external field.
therefore, constitutes the external control of the engine’s
eration cycle.Ĥint represents the uncontrolled interpartic
interaction part.

The existence of the interaction term in the Hamiltoni
means that the external field only partly controls the ene
of the system. One can distinguish two cases, first case
curs when the two parts of the HamiltonianĤext and Ĥint

commute. The other case occurs when@Ĥext ,Ĥint#Þ0 leads
to @Ĥint(t),Ĥint(t8)#Þ0, causing important restrictions o
the cycle of operation~cf. Sec. VI!.

Since the energy isE5^Ĥ&, the energy balance become
cf. Eq. ~3!:

dE

dt
5^L* ~Ĥ!&1K ]Ĥ

]t L . ~13!

Equation~13! is composed of the change in time due to t
explicit time dependence of the Hamiltonian@cf. Eq. ~3!#
interpreted as the thermodynamic power:

P5v̇(
i

^Ĥi&, ~14!

where ^Ĥi& is the expectation value of the single-partic
Hamiltonian. The accumulated work on an engine traject
W5*Pdt.

The heat flow represents the change in energy due to
sipation:

Q̇5^LD* ~Ĥ!&5^LD* ~Ĥext1Ĥint !&, ~15!
01610
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@note L* (Ĥ)5LD* (Ĥ) since LH* (Ĥ)50]. Equations~13!,
~14!, and ~15! lead to the time derivative of the first law o
thermodynamics@9,16,33,34#:

dE

dt
5P1Q̇. ~16!

B. Entropy balance

Assuming the bath is large, the entropy production due
heat transfer from the system to the bath becomes

DS5
Q̇
T

, ~17!

whereT is the bath temperature.
Adopting the supposition that entropy is a measure of

dispersion of the measurement of an observable^Â&, we can
label the entropy of the working medium according to t
measurement applied i.e.,SÂ . The probability of obtaining a
particular i th measurement outcome ispi5tr$P̂ir̂%, where
P̂i5u i &^ i u are the projections of thei th eigenvalue of the
operatorÂ. The entropy associated with the measuremen
Â becomes

SÂ52(
i

pi ln pi . ~18!

The probabilities in Eq.~18! can be obtained from the diag
onal elements of the density operatorr in the eigenrepresen
tation of Â. The entropy of the operatorÂ, which leads to
minimum dispersion~18!, defines an invariant of the system
termed the von Neumann entropy@35#:

SVN52tr $r̂ ln r̂%, ~19!

SÂ>SVN for all Â. When SVN50, the state is pure. The
analysis of the energy entropySE5SĤ of the working fluid
during the cycle of operation is a source of insight into t
dynamics. It has the propertySE>SVN with equality when
the r is diagonal in the energy representation, which is tr
in thermal equilibrium. Then,

r̂eq5
e2bĤ

Z
, ~20!

with b51/kbT andZ5tr$e2bĤ%, The system’s temperatur
has thus become identical to the bath temperature. When
working medium is not in thermal equilibrium, a dynamic
temperature of the working medium is defined by@36#

Tdyn5

S ]E

]t D
S ]SE

]t D , ~21!

where the derivative is taken with constant external field.
~21! will be used to define the internal temperature
1-3
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the working fluid ~cf. Sec. V A!. The energy entropySE is
used since the temperature is associated with the dispe
in energy. If the von Neumann entropySvn would have been
used, the temperature would become infinite during unit
evolution stages.

III. THE QUANTUM MODEL

The following quantum model demonstrates a discr
heat engine with a cycle of operation defined by an exte
control on the Hamiltonian and by the time duration whe
the working medium is in contact with the hot and the co
bath. The model studied is a particular realization of
general framework of Sec. II. First, the generators of
motion, LH and LD , are derived leading to equations
motion. These equations of motion are then solved for e
of the branches, thus constructing the operating cycle.

A. The equations of motion

The generators of the equations of motion are the Ham
tonian for the unitary evolution andLD for the dissipative
part @cf. Eq. ~8!#. The notation and normalization of the op
erators have been somewhat modified with respect to
notations of Ref.@4#.

1. The Hamiltonian

The single-particle Hamiltonian is chosen to be prop
tional to the polarization of a two-level system~TLS!, ŝz

j ,
which can be realized as an ensemble of spins in an exte
time dependent magnetic field. The operatorsŝz ,ŝx ,ŝy are
the Pauli matrices. For this system, the external Hamilton
Eq. ~12!, becomes

Ĥext5223/2v~ t !~ŝz
1

^ Î21 Î1
^ sz

2!, ~22!

and the external control fieldv(t) is chosen to be in thez
direction.

The uncontrolled interaction Hamiltonian is chosen to
restricted to coupling of pairs of spin atoms. Therefore,
working fluid consists of noninteracting pairs of TLS’s. F
simplicity, a single pair can be considered. The thermo
namics ofM pairs then follows by introducing a trivial scal
factor. Accordingly, the uncontrolled part is

Ĥint5223/2J~ŝx
1

^ ŝx
22ŝy

1
^ ŝy

2!, ~23!

J scales the strength of the interaction. WhenJ→0, the
model represents a working medium with noninteracting
oms@5#. The interaction term, Eq.~23!, defines a correlation
energy between the two spins in thex andy directions. As a
result, the interaction Hamiltonian does not commute w
the external Hamiltonian, Eq.~22!, which is chosen to be
polarized in thez direction.

2. The operator algebra of the working medium

The maximum size of the complete operator algebra
two coupled spin systems is 16. A minimum set of operat
closed toL* is sought, which is sufficient as the basis f
01610
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describing the thermodynamical quantities. First, a Lie al
bra, which is closed to the unitary evolution part is to
determined. To generate this algebra, the commutation r
tions between the operators composing the Hamiltonian
evaluated@cf. Eq. ~10!#. Defining

B̂15223/2~ŝz
1

^ Î21 Î1
^ ŝz

2!5
1

A2 S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D ,

~24!

where the tensor product eigenstates ofŝz
1 and ŝz

2 are used
as a basis for the matrix representation, termed the ‘‘po
ization representation.’’ Notice thatB̂1 is diagonal in this
representation.

The second operatorB̂2 is

B̂25223/2~ŝx
1

^ ŝx
22ŝy

1
^ ŝy

2!5
1

A2 S 0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

D .

~25!

The commutation relation@B̂1 ,B̂2#5A2i B̂3 leads to the defi-
nition of B̂3 :

B̂35223/2~ŝy
1

^ ŝx
21ŝx

1
^ ŝy

2!
1

A2 S 0 0 0 2 i

0 0 0 0

0 0 0 0

i 0 0 0

D .

~26!

The set of operatorsB̂1 ,B̂2 ,B̂3 form a closed subalgebr
of the total Lie algebra of the combined system. The Ham
tonian expressed in terms of the operatorsB̂1 ,B̂2 ,B̂3 be-
comes

Ĥ5vB̂11JB̂25
1

A2 S v 0 0 J

0 0 0 0

0 0 0 0

J 0 0 2v

D . ~27!

All the three operators are Hermitian, and orthogonal@cf. Eq.
~4!#. Table I summarizes the commutation relations of t
set of operators.

The commutation relations of the set ofB̂k operators de-
fine the SU~2! group and are isomorphic to the angular m
mentum commutation relations by the transformati
B̂k→ Ĵk . B̂1 ,B̂2 ,B̂3 can be identified as the generators
rotations around thez,x, andy axes, respectively. This rep
resentation allows us to express the expectation values
cartesian three-dimensional space~see Fig. 1!.
1-4
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3. The generators of the dissipative dynamics

The dissipative part of the dynamics is responsible for
approach to thermal equilibrium when the working mediu
is in contact with the hot~cold! baths. The choice of Lind-
blad’s form in Eq.~11! guarantees the positivity of the evo
lution @28#. The operatorsF̂j which lead to thermal equilib-
rium are constructed from the transition operators betw
the energy eigenstates. Diagonalizing the Hamiltonian~12!
leads to the set of energy eigenvalues and eigenstates:

e152
V

A2
, e250, e350, e45

V

A2
, ~28!

where V5Av21J2. The method of construction ofF̂j is
based on identifying the operators with the raising and lo
ering operators in the energy frame. For example,F̂1

5Ak↓u2&^1u or F̂25Ak↑u1&^2u. The bath temperature ente
through the detailed balance relation@5,10#

k↑
k↓

5e2bV/A2, b5
1

T
. ~29!

The operatorsF̂j constructed in the energy frame are th
transformed into the polarization representation. The det
are described in the Appendix. As can be seen in Sec. IV,
choice leads to the thermal equilibrium state.

Substituting theB̂i operators intoLD , Eq. ~11!, one gets

LD~B̂1!52GS B̂11
v

A2V

k↓2k↑
G

Î D ,

LD~B̂2!52GS B̂21
J

A2V

k↓2k↑
G

Î D , ~30!

LD~B̂3!52G~B̂3!,

whereG5k↓1k↑ .
From Eq.~30!, the set of$B̂% operators and the identit

operator Î is closed with respect to the application of th
dissipative operatorLD which leads to equilibration.

The interaction of the working medium with the bath c
also be elastic. These encounters will scramble the ph
conjugate to the energy of the system and are classifie

TABLE I. Multiplication table of the commutation relation

@X̂,Ŷ# of the operatorsB̂l , B̂2 , B̂3 , among themselves and with th
Hamiltonian.

X̂\Ŷ B̂1 B̂2 B̂3

B̂1
0 iA2B3 2 iA2B̂2

B̂2 2 iA2B̂3
0 iA2B̂1

B̂3 iA2B̂2 2 iA2B̂1
0

Ĥ 2 iA2JB̂3 iA2vB̂3 iA2JB̂12 iA2vB̂2
01610
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pure dephasing (T2) @cf. Eq. ~83!#. In Lindblad’s formula-
tion, the dissipative generator of elastic encounters is
scribed as

L De* ~Â!52g†Ĥ,@Ĥ,Â#‡. ~31!

The elastic property is equivalent toL De* (Ĥ)50. Moreover,

FIG. 1. The optimal cycle trajectoryABCD and the infinitely

long trajectoryEF in theb15^B̂1&, b25^B̂2&, b35^B̂3& coordinate
system showing three viewpoints.
1-5



a

f
um
. A

of

are
re-
on

of
p-

T. FELDMANN AND R. KOSLOFF PHYSICAL REVIEW E68, 016101 ~2003!
the setB̂i which is closed to the commutation relation withĤ
is also closed toL De* .

To summarize, the setB̂1 ,B̂2 ,B̂3 and Î is closed under the
operation of L* 5LH* 1LD* 1L De* . Gathering together the
various contributions leads to the explicit form of the equ
tion of motion

d

dtS ^B̂1&

^B̂2&

^B̂3&
D

5S 2G22gJ2 22gJv A2J

22gvJ 2G22gv2 2A2v

2A2J A2v 2G22gV2D
3S ^B̂1&

^B̂2&

^B̂3&
D 2S v

A2V
~k↓2k↑!

J

A2V
~k↓2k↑!

0

D ~32!

or in vector form
01610
-

d

dt
b¢5Bb¢2c¢, ~33!

wherebk5^B̂k&. Equation~32! can describe the dynamics o
a very general cycle of operation where the working medi
is in contact with a heat bath and a variable external field
particular example is chosen for analysis.

B. Integrating the equations of motion for the Otto cycle

The thermodynamical observables require the solution
the equations of motion on the twoisochoresand twoadia-
bats. On theisochores, the field valuesv are constant thus
allowing a closed form solution. On theadiabats, v changes
with time and the coupling constants to the heat baths
zero. Therefore, solving the equation of motion either
quires a numerical solution or finding a particular soluti
based on an explicit time dependence ofv.

Solving the equations of motion on the isochores

On the isochores, the coefficients in Eq.~33! are time
independent. A solution is found by diagonalizing theB ma-
trix leading to the eigenvalues:2G2 iA2V 2 2gV2,
2G, and 2G1 iA2V 2 2gV2. The diagonalization en-
ables us to perform in closed form the exponentiation
eB 8Dt obtaining the propagator of the working medium o
eratorsU(Dt):
U~Dt !5RS e2(G1 iA2V12gV2)Dt 0 0

0 e(2GDt) 0

0 0 e2(G2 iA2V12gV2)DtD R 21,

where

R5S iJ/A2V v/V 2 iJ/A2V

2 iv/A2V J/V iv/A2V

1/A2 0 1/A2
D , ~34!

leading to the final result

U~Dt !5exp@2~G12gV2!Dt#S Xv21cJ2

V2

vJ~X2c!

V2

Js

V

vJ~X2c!

V2

XJ21cv2

V2

2vs

V

2
Js

V

vs

V
c
D , ~35!
1-6
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where X5exp(2gV2Dt), c5cos(A2VDt), and s
5sin(A2VDt). The solution of Eq.~32! then becomes

b¢~ t1Dt !5U~Dt !~b¢~ t !2b¢eq!1b¢eq, ~36!

where the equilibrium values of the operators are calcula
from the steady state solutions of Eq.~33!:

b1
eq5^B̂1

eq&52
A2v

VZ
sinh~Vb/A2!52

v

A2V

k↓2k↑
G

,

b2
eq5^B̂2

eq&52
A2J

VZ
sinh~Vb/A2!52

J

A2V

k↓2k↑
G

,

~37!

b3
eq5^B̂3

eq&50.

On theisochores, the solution of Eq.~35! can be extended to
the full duration th/c of propagation on the hot~cold!
branches. Therefore,Dt5th/c .

There are cycles of operation where the external fieldv
also varies when the working medium is in contact with t
hot or cold baths, for example, the Carnot cycle@11#. For
such cycles, the equation of motion can be solved by dec
posing these branches into small segments of durationDt.
Then, Eq.~36! can be used as an approximate to the sh
time propagator.

C. Propagation of the observables on the adiabats

The equations of motion on theadiabatshave explicit
time dependence. To overcome this difficulty, two a
proaches are followed. The first is based on decomposing
evolution to short time segments and using a short time
proximation to solve the equations of motion. The seco
approach is based on finding a particular time depende
form of v(t), which allows an analytic solution.

1. Short time approximation

For the adiabatic branches, the working medium is de
coupled from the baths so that the time propagation is u
tary. Equation~32! thus simplifies to

d

dt S b1

b2

b3
D 5S 0 0 A2J

0 0 2A2v~ t !

2A2J A2v~ t ! 0
D S b1

b2

b3
D ,

~38!

or in the vector form (d/dt)b¢5L̃(t)b¢ . Since the matrixL̃(t)
is time dependent, the propagation is broken into short t
segmentsDt, reflecting the fact that@ L̃(t),L̃(t8)#Þ0,

b¢~ t !5)
j 51

N

expS E
( j 21)Dt

j Dt

L̃~ t8!dt8D b¢~0!, ~39!
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whereNDt5t. Equation~38! is solved by diagonalizing the
matrix L̃ for each time step assuming that during the per
Dt, v(t) is constant. Under such conditions,Ua(t,Dt) be-
comes~the indexa stands foradiabat!

Ua~ t,Dt !5eL̃(t)Dt5S v21cJ2

V2

vJ~12c!

V2

Js

V

vJ~12c!

V2

J21cv2

V2
2

vs

V

2
Js

V

vs

V
c
D ,

~40!

which becomes the short time propagator for the adiab
from time t to t1Dt.

2. An analytical solution on the adiabats

The analytic solution for the propagator on theadiabatsis
based on the Lie group structure of the$B̂% operators. The
solution is based on the unitary evolution operatorÛ(t),
which for explicitly time dependent Hamiltonians is obtain
from the Schro¨dinger equation:

2 i
d

dt
Û~ t !5Ĥ~ t !Û~ t !, Û~0!5 Î . ~41!

The propagated set of operators becomes

B̂¢ ~ t !5Û~ t !B̂¢ ~0!Û†~ t !5Ua~ t !B̂¢ ~0!, ~42!

and is related to the superevolution operatorUa(t). Based on
the group structure, Wei and Norman@37# constructed a so-
lution to Eq.~41! for any operatorĤ, which can be written
as a linear combination of the operators in the closed
algebraĤ(t)5( j 51

m hj (t)B̂i , where thehi(t) are scalar func-
tions of t, @cf. Eq. ~10!#. In such a case, the unitary evolutio
operatorÛ(t) can be represented in the product form:

Û~ t !5)
k51

m

exp@ak~ t !B̂k#. ~43!

The product form replaces the time dependent operator e
tion ~38! with a set of scalar differential equations for th
functionsak(t). As has been shown in Sec. III A 2, threeB̂k
operators form a closed Lie algebra. Writing the unitary ev
lution operator explicitly leads to

Û~ t !5expF i
a1~ t !

A2
B̂1GexpF i

a2~ t !

A2
B̂2GexpF i

a3~ t !

A2
B̂3G .

~44!

The A2 factor is introduced for technical reasons. Based
the group structure@37#, Eq. ~41! leads to the following set
of differential equations has to be solved:
1-7



he
lu-

u

en
o-

he

ui-

nal
e

T. FELDMANN AND R. KOSLOFF PHYSICAL REVIEW E68, 016101 ~2003!
ȧ15A2v~ t !1A2JFsin~a1!sin~a2!

cos~a2! G ;

ȧ25A2J cos~a1!; ȧ35
A2J sin~a1!

cos~a2!
. ~45!

Using Eq.~42!, the propagatorUa(t) is evaluated explicitly
in terms of the coefficientsa:

Ua~ t !5S c2c3 2s3c11c3s2s1 c3s2c11s3s1

c2s3 c3c11s3s2s1 s3s2c12c3s1

2s2 c2s1 c2c1
D ,

~46!

where s15sin(a1), s25sin(a2), s35sin(a3), c15cos(a1), c2
5cos(a2), andc35cos(a3).

The problem of obtaining a closed form solution for t
propagatorUa(t) has been transformed into finding the so
tion of three coupled differential equations, Eq.~45!, which
depend onv(t). A general solution has not been found, b
by choosing a particular functional form forv(t), a closed
form solution has been obtained.

3. The explicit solution fora

To facilitate the solution of Eq.~45!, a particular form of
v(t) is chosen:

v~ t !5
ȧ1

A2
2J

sin~a1!sin~a2!

cos~a2!
. ~47!

Two auxiliary functions are defined,u(t) andv(t):

u~ t !52J2t21A2rJt; v~ t !5r 2A2Jt. ~48!

Here, r is a constant which restricts the productJt: $0,r
,1; Jt,A2r %. In terms ofu(t) and v(t), the solutions of
Eq. ~45! become

a15arccosS 1

A112u
D , ~49!

a25arcsinS 1

11r 2
~rA112u2v !D , ~50!
01610
t

a352
r

2
ln~2A4u212u14u11!

2
A12r 2

2 H arcsinF2r 2~12r 2!

2u112r 2
1122r 2G2

p

2 J
2H arcsinFv

r G2
p

2 J 2
A12r 2

2 H arcsinF1

r F12
12r 2

11v G D
1arcsinS 1

r F12
12r 2

12v G D J . ~51!

For t50, Û5 Î , thereforea1(0)50, a2(0)50, a3(0)50,
which is consistent with Eqs.~49!,~50!, and~51!.

Substituting into Eqs.~47!, the explicit functional forms
of ak , v(t) becomes

v~ t !5
Jv

A2~112u!Au
2J

A2Au~rA112u2v !

A112u~A112u1rv !
.

~52!

At t50, v is singular. Since the engine operates betwe
two finite values ofv, a corresponding time segment is ch
sen which does not include the singularity att50 ~cf. Fig.
2!. Using the group property ofUa(t), i.e., Ua(t1)Ua(t2)
5Ua(t11t2), the propagation is carried out by changing t
origin of time,Ua(t)5U a

21(t0)Ua(t1t0) wheret0 is eithert i

for the compressionadiabator t f for the expansionadiabat.
One should note thatU a

21(t)5U a
†(t), but due to the explicit

time dependenceU a
21(t)ÞU a

†(2t).

IV. RECONSTRUCTION OF r̂R

„SCHRÖDINGER PICTURE …

The reconstruction ofr̂, Eq. ~7!, is designed to describe
the state of the working medium from its initial state to eq

FIG. 2. The external fieldv as a function of time on theadia-
batscorresponding to the function, Eq.~52!, for which an analytic
solution exists. Indicated are the values of the initial and the fi
time and of the correspondingv, which are used to construct th
cycle of operation. Note the singularity att50.
1-8
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QUANTUM FOUR-STROKE HEAT ENGINE: . . . PHYSICAL REVIEW E 68, 016101 ~2003!
librium. As was analyzed in the preceding section, the se
operatorsB̂1 ,B̂2 ,B̂3 , Î is sufficient to describe the energ
changes during the cycle of operation of the engine. Is
set sufficient to reconstruct the density operator?

In equilibrium, r̂eq is diagonal in the energy represent
tion. From the eigenvalues of the Hamiltonian, Eq.~28!, r̂eq

in the energy picture becomes

r̂e
eq51

eVb/A2

Z
0 0 0

0
1

Z
0 0

0 0
1

Z
0

0 0 0
e2Vb/A2

Z

2 , ~53!

where

Z5exp2~Vb/A2!121exp~Vb/A2!

5
k↑
k↓

121
k↓
k↑

5
G2

k↓k↑
. ~54!

By inspection, the diagonal elements of the equilibrium d
sity operator are seen to be defined by three indepen
variables. The energy expectation accounts for one varia
The expectation value ofB̂3 has no diagonal elements in th
energy representation, therefore two additional operators
required to facilitate a reproduction ofr̂R:

B̂45223/2~ŝz
1

^ Î22 Î1
^ ŝz

2!5
1

A2 S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0
D ,

~55!

and

B̂55
1

2
ŝz

1
^ ŝz

25
1

2 S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1
D . ~56!

Since bothB̂4 and B̂5 commute with the Hamiltonian, thes
undergo only dissipative dynamics but these are unin
enced by the dephasing generated byLD* :

Ḃ̂452GB̂4 ~57!

with the solution
01610
f

is

-
nt

le.
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B̂4~ t !5B̂4~0!exp~2Gt !, ~58!

and ^B̂4
eq&50. The equation of motion ofB̂5 is

Ḃ̂5522GB̂52A2
v

V
~k↓2k↑!B̂12A2

J

V
~k↓2k↑!B̂2

522GB̂512G^B̂1
eq&B̂112G^B̂2

eq&B̂2 . ~59!

At equilibrium, Ḃ̂550, and then̂ B̂5
eq&5(B̂1

eq)21(B̂2
eq)2, a

result which can be verified by computinĝ B̂5
eq&

5 tr$r̂eqB̂5%. Equation~59! is a linear first-order inhomoge
neous equation forB̂5 depending on the time dependence
the closed setB̂1 ,B̂2 ,B̂3 , Eq. ~36!. Changing Eq.~59! to
observables, Eq.~1!, and by integrating subject to the solu
tions of b1 andb2 leads to

b5~ t !5
2

V2
$v@b1~0!2b1

eq#1J@b2~0!2b2
eq#%

3~vb1
eq1J b2

eq!~e2Gt2e22Gt!

1k0@k1c~e2(G12gV2)t!1k2 se2(G12gV2)t

2k1e22Gt#1@b5~0!2b5
eq#e22Gt1b5

eq, ~60!

where

k05
2G~Jb1

eq2vb2
eq!

V2@~G22gV2!212V2#
, ~61!

k15$J@b1~0!2b1
eq#2v@b2~0!2b2

eq#%~G12gV2!

2V@b3~0!2b3
eq#~A2V!,

and

k25$J@b1~0!2b1
eq#2v@b2~0!2b2

eq#%~A2V!

1V@b3~0!2b3
eq#~G22gV2!.

Using the set of the five orthogonal and normalized opera
together with the identity operator, the density operatorr̂R is
reconstructed. Representingr̂R in different bases facilitates
the calculation of the different entropies.r̂R in the polariza-
tion basis becomes
1-9
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r̂p51 0 0
1

4
2

b4

A2
2

b5

2
0

b2

A2
1 i

b3

A2
0 0

1

4
2

b1

A2
1

b5

2

2 . ~62!

The off-diagonal elements ofr̂p are the expectation values of the operatorsB̂651/A2(B̂26 i B̂3), which represent the corre
lation between the individual spins and also determine the entanglement.

The density operatorr̂R in the energy basis becomes

r̂e51
1

4
2

E

VA2
1

b5

2
0 0 1

ib3

A2
2

Jb1

VA2
1

vb2

VA2

0
1

4
1

b4

A2
2

b5

2
0 0

0 0
1

4
2

b4

A2
2

b5

2
0

2
ib3

A2
2

Jb1

VA2
1

vb2

VA2
0 0

1

4
1

E

VA2
1

b5

2

2 , ~63!

where E5vb11Jb2. In equilibrium, the off-diagonal elements vanish, and the matrix will be identical to Eq.~53!. In
nonequilibrium, the off-diagonal elements ofr̂e determine the ‘‘phase,’’ cf. Sec. VII.

To compute the von Neumann entropy,r̂R is diagonalized leading to

r̂vn51
1

4
2

D

A2
1

b5

2
0 0 0

0
1

4
1

b4

A2
2

b5

2
0 0

0 0
1

4
2

b4

A2
2

b5

2
0

0 0 0
1

4
1

D

A2
1

b5

2

2 , ~64!

whereD5Ab1
21b2

21b3
2.
on

a

ese
V. THE THERMODYNAMIC QUANTITIES
FOR THE COUPLED SPIN FLUID

The solution of the equation of motion for the expectati

values and the reconstruction of the stater̂R are the prereq-
uisite for calculating the thermodynamical observables on
01610
ll

branches of the engine. The explicit equations for th
quantities are now derived.

A. Dynamical temperature „Tdyn… on the branches

Based on the definition of the dynamical temperatureTdyn
in Eq. ~21!, and from Eq.~27!,
1-10
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Tdyn5
v̇b11vḃ11Jḃ2

2( ṗi
E@11 ln~pi

E!#

5

v̇b12GE2
V

A2
~k↓2k↑!

2( ṗi
E@11 ln~pi

E!#

, ~65!

The four probabilitiespi
E are the diagonal elements of th

density operator in the energy representationr̂e , Eq. ~63!.
The derivatives of the probabilities are obtained from E
~32! and ~59!:
o

pi

be

01610
.

ṗ1
E5

2v̇b11GE

VA2
1

~k↓2k↑!

2
1

ḃ5

2
, ṗ2

E52
ḃ5

2
,

ṗ3
E52

ḃ5

2
, ṗ4

E5
v̇b12GE

VA2
2

~k↓2k↑!

2
1

ḃ5

2
, ~66!

where ḃ5 is obtained from Eq.~59!, ḃ552G(b1
eqb11b2

eqb2

2b5).

1. Dynamical temperature on the isochores

Evaluating the derivatives of the probabilities in Eqs.~66!

and using the fact that on theisochoresv̇50, the dynamical
temperature, Eq.~65!, becomes
Tdyn5

FGE1
V

A2
~k↓2k↑!G

F GE

VA2
ln~p1 /p4!1

~k↓2k↑!

2
ln~p1 /p4!1

1

2
ḃ5ln~p1p4 /p2p3!G . ~67!
in

e

he
tion

q.
en-
A consistency check is obtained by comparingTdyn for J
50 with the internal temperature of a two-level system. F
J50,

Tdyn5
v

A2lnS 1/21b1 /A2

1/22b1 /A2
D , ~68!

which leads to

b1521/A2
k↓2k↑
k↓1k↑

521/A2tanhS v

A2Tdyn
D , ~69!

which is the internal temperature for a noninteracting s
system with energy spacingv/A2 @10#.

2. Dynamical temperature on the adiabats

On the adiabats b˙ 45 and ḃ550. From Eqs.~65! and
~66!, the derivatives of the probabilities on the adiabats
come for constantV,

ṗ1
E52

v̇

VA2
; ṗ2

E50; ṗ3
E50; ṗ4

E5
v̇

VA2
, ~70!

leading to the dynamical temperature on theadiabats:

Tdyn
ad 5

VA2

lnS p1
E

p4
ED , ~71!
r

n

-

which could be obtained directly from the density operator
the energy representation, Eq.~63!.

B. The heat absorbed or delivered by the heat engine

Using Eq.~15!, the heatQh/c absorbed or delivered on th
isochoresbecomes

Qi5@exp~2Gt i !21#~v ib11Jb2!, ~72!

wherei 5h/c.

C. The work absorbed or delivered by the heat engine

The power absorbed or emitted on theadiabats, cf. Eq.
~14!, becomes

P5 K ]H

]t L 5v̇^B̂1&. ~73!

In the limit of slow change ofv, the state of the system
follows adiabatically the Hamiltonian. This means that t
diagonal elements of the state in the energy representa
r̂e , Eq. ~63!, do not change. Stated differently,^Ĥ&/V is a
constant. In this limit, the power becomes

Pslow5V̇
^Ĥ&
V

. ~74!

Equation~74! suggests a decomposition of the power, E
~73!, into a component in the energy direction and a perp
dicular contribution leading to
1-11
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P5V̇
^Ĥ&
V

1
v̇J

V2
~J^B̂1&2v^B̂2&!, ~75!

where the first term, which is diagonal in the energy fram
represents the power required to change the field agains
response of the system. The second term is the additi
power required to drive the working fluid in a finite rate. Th
term is interpreted as the power invested against friction
it vanishes whenJ50 or v̇50. The additional power come
from the off-diagonal elements in the energy representat
The total work on theadiabaticbranches is obtained by in
tegrating the power:

W5E
t i

tf
b1v̇dt, ~76!

which leads to the slow limitWslow5(V f2V i)E(t)/V.

D. Entropy production

Since the engine operation is cyclic, entropy producti
DScycle, is created on the boundaries with the heat bath@cf.
Eq. ~17!# i.e., on theisochores:

DScycle52~QAB /Th1QCD/Tc!. ~77!

E. Efficiency

The efficiency per cycle,hcycle, is

hcycle5W/QAB5

E
t i

tf

b1v̇dt

@exp~2Gt i!21#~v ib11Jb2!
. ~78!

The maximal efficiency of the engine is

hmax512
Va

Vb

512
Ava

21J2

Avb
21J2

,

which is below the Carnot efficiency, for allJ since the en-
gine produces power only whenva /vb.Tc /Th :

hmax512
Ava

21J2

Avb
21J2

,12
va

vb

,12
Tc

Th

. ~79!

VI. THE CYCLE OF OPERATION: THE OTTO CYCLE

The operation of the heat engine is determined by
properties of the working medium and by the hot and c
baths. These properties are summarized by the generat
the dynamicsL. The cycle of operation is defined by th
external controls that include the variation in time of the fie
with the periodic propertyv(t)5v(t1t), where t is the
total cycle time synchronized with the contact times of t
working medium with the hot and cold bathsth andtc . In
this study, a specific operating cycle composed of t
branches termedisochores, where the field is kept constan
01610
,
the
al

d

n.

,

e
d
of

o

and the working medium is in contact with the hot~cold!
baths. In addition, two branches termedadiabatswhere the
field v(t) varies and the working medium is disconnect
from the baths. This cycle is a quantum analog of the O
cycle.

The dynamics of the working medium has been descri
in Sec. III. The parameters defining the cycle are~1! Th and
Tb , the hot and cold bath temperatures;~2! Gh andGc , the
hot and cold bath heat conductance parameters;~3! gh and
gc , the hot and cold bath dephasing parameters;~4! J—the
strength of the internal coupling.

The external control parameter defines the four stroke
the cycle~cf. Fig. 3!:

~1! IsochoreA→B: when the field is maintained constan
v5vb , the working medium is in contact with the hot ba
for a period ofth .

~2! Adiabat B→C: when the field changes linearly from
vb to va in a time period oftba .

~3! IsochoreC→D: when the field is maintained constan
v5va , the working medium is in contact with the cold ba
for a period oftc .

~4! Adiabat D→A: when the field changes linearly from
va to vb in a time period oftab .

The trajectory of the cycle in the field and the entro
plane (v,SE) is shown in Fig. 3, employing a numerica
propagation with a linearv dependence on time.

A different perspective of the dynamics during the cyc
of operation is shown in Fig. 3, displaying the cycle traje
tory in the b1 ,b2 ,b3 coordinates. The hypothetical cycl

FIG. 3. The heat engine’s optimal cycles in the (v,SE) plane.
The upper line, denoted byTh , indicates the energy entropy of th
working medium in the equilibrium with the hot bath at temperatu
Th for different values of the field. The line below, denoted byTc ,
indicates the energy entropy in the equilibrium with the cold bath
temperatureTc . The cycle touching the pointsE and F has an
infinite time allocation on all branches. It reaches the equilibriu
point with the hot bath~pointE! and equilibrium point with the cold
bath~point F!. The inner cycleABCD is the optimal cycle with the
optimal time allocation on all branches, calculated numerically fo
linear v dependence on timeth53.0108, tba50.301,tc53.014,
and tch50.346. The external parameters areva55.382,vb

512.717,J52, Th57.5, Tc51.5, Gh50.382, andGc50.342, and
gh5gc50.
1-12
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QUANTUM FOUR-STROKE HEAT ENGINE: . . . PHYSICAL REVIEW E 68, 016101 ~2003!
with infinitely long time on all branches would include th
equilibrium pointsE andF. The cycle trajectory is planar o
the B̂350 plane as can be seen in panelC. The cycleABCD
with finite-time allocation spirals around the infinitely lon
time cycle with an incursion into theB̂3 direction. The ref-
erence cycle with infinite time allocation on all branches
characterized by a diagonal stater̂e in the instantaneous en
ergy representation. The slow motion on theadiabatsallows
the stater̂ to adopt to the changes in time of the Ham
tonian, which therefore can be termed adiabatic following
the time allocation on the adiabats is short, nonadiabatic
fects take place. In the sudden limit of infinite short tim
allocation on theadiabat, the state of the system has no tim
to evolve,r̂(t i1tab)5r̂(t i). Insight into the transition from
the slow to the sudden limit is obtained by following th
dynamics in the energy representation. In this time dep
dent frame the Liouville–von Neumann equation~2! be-
comes

ṙ̂e52 i @Ĥe ,r̂e#1 i
v̇J

2V2
@B̂3 ,r̂e#. ~80!

The first term in the rhs of Eq.~80! generates a precessio
motion around the energy direction. Ifr̂e is diagonal, for
example, when starting from thermal equilibrium, this te
will vanish since it commutes withĤe. The second term
generates a precession motion around theB̂3 direction with a
ratej5v̇J/V2 leading to off-diagonal elements ofr̂e .

When following the direction of the cycle, the energy e
tropy increases on theadiabats. This is evident in Figs. 3 and

FIG. 4. Three cycles of operation based on the analytic solu
in the (v,SE) plane. The inner cycle, emphasized by arrows, h
the shortest time allocations (th52, tba5tab50.05,tc52.1). The
rectangle cycle shows the corresponding (v,SVN) plot. The outer
cycle, emphasized by arrows, has longer time allocationsth5tc

515, tba5tab50.05, while the black cycle has infinite time allo
cations on all branches, therefore,SE5SVN . This cycle touches the
isothermal equilibrium pointsE andF. The common parameters fo
all the cycles areJ52, r 50.96, Th57.5, Tc51.5, Gh5Gc

50.3243,gh5gc50, va55.083 64, andvb511.8675.
01610
f
f-
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4. This entropy increase is the signature of nonadiabatic
fects reflecting the inability of the population on the ener
states to follow the change in time of the Hamiltonian. As
result, the energy dispersion increases. Since the evolu
on these branches is unitary,SVN is constant. When more
time is allocated to theadiabats, the increase inSE is
smaller. For infinite time allocation,SE5SVN .

The larger curvature of the entropy increase in the a
lytic result of Fig. 4, compared with the numerical result
Fig. 3, reflects the difference in the dependence ofv(t) on
time. When the analytic functional form ofv(t) is used in
the numerical propagation, the numerical solution conver
to the values of the analytic solution. This convergence
was used as a consistency check for both methods. This
vergence was not uniform for all elements in the propaga
@cf. Eqs.~40! and ~46!#. Comparing the elements of the nu
merical propagatorUa(tab) to the elements of analytic
Ua(tab), showed that the largest discrepancy between
individual elements att5tab was less than 1023, when a
time step ofDt5tab/1000 was used.

In Fig. 5, the cycle of operation is presented in the ener
entropy internal-temperature coordinates (SE ,Tdyn). The
cycles shown correspond to the analytical cycles of Fig
The discontinuities in the short time cycle reflect the ov
heating in the compression stage, shown as the differe
between the pointsA andA8 in Fig. 5. The heat accumulate
is quenched when the working medium is put in contact w
the hot bath. This phenomena has been identified in meas
ments of working fluid temperatures in actual heat engine
heat pumps@26#. A discontinuity as a result of the insuffi
cient cooling of the working medium in the expansio

n
s

FIG. 5. The cycles in (SE ,Tdyn) planes. The inner cycle
A,B,C,D corresponds to the short time cycle of Fig. 4. The cy
indicated with arrows is the long time cycle and the cycleH,E,G,F
corresponds to the cycle with infinite time allocation on
branches. The rectangle, including pointsI,E,K,F, is the work ob-
tained in a Carnot cycle operating betweenTh andTc . The shaded
areaH,E,G,F represents the maximum work of the Otto cycle. T
area below theAB segment is the heat transferred from the hot b
Qh . The area below theDC segment is the heat transferred to t
cold bathQc .
1-13
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branch is also evident in the short time cycle. The magnit
of these discontinuities is reduced at longer times and dis
pears for the infinite long cycle where the working flu
reaches thermal equilibrium with the hot bath at pointE and
with the cold bath at pointF. In this case, bothadiabatic
branches are isentropic. It is clear from Fig. 5 that for
cycles with verticaladiabats, the work is the area enclose
by the cycle trajectory. When the time allocation on theadia-
bats is restricted, this is no longer the case as due to
entropy increase, the area under the hotisochoredoes not
cover the area under the coldisochore. Additional cooling is
then required to dissipate the extra work required to drive
system on theadiabatsat finite time.

VII. THE EFFECT OF PHASE AND DEPHASING

Performance of the heat engine explicitly depends on h
and work, which constitute the energy~16!. Do other observ-
ables, incompatible with the energy, influence the engi
performance? Examining the cycle trajectory on theisoch-
ores in Fig. 1, in addition to the motion in the energy dire
tion, toward equilibration, spiraling motion exists. This m
tion is characterized by the amplitude and the phase o
observable in the plane perpendicular to the energy direct
The phasef of this motion advances in time, i.e.,f}t. The
concept of phase has its origins in classical mechanics, w
a canonical transformation leads to a new set of action a
variables. The conjugate variable to the Hamiltonian is
phase. In quantum mechanics, the phase observable has
a subject of continuous debate@38#. For a harmonic oscilla-
tor, it is related to the creation and anhilation operatorâ
@39,40#. In analogy the raising~lowering! operator is defined
as

L̂65
1

A2V
~2JB̂11vB̂26 iVB̂3!, ~81!

which has the following commutation relation with th
Hamiltonian:

@Ĥ,L̂6#56A2VL̂6 . ~82!

The free evolution of L̂1 therefore becomesL̂1(t)
5eiA2VtL̂1(0), which defines the phase variable throu

^L̂1&5reif, thereforef5arctan@Vb3 /2Jb11vb2#. A cor-
roboration for this interpretation is found by examining t
stater̂e in the energy representation@cf. Eq. ~63!#. The off-
diagonal elements are completely specified by the expe
tion values ofL̂6 .

The dynamics ofL̂6 on theisochoresincludes also dissi-
pative contributions, which can be evaluated using Eq.~32!:

L̇̂656 iA2VL̂62~G12gV2!L̂6 . ~83!

Examining Eq.~83!, it is clear that the amplitude ofL̂6

decays exponentially with the rate 1/T25G12gV2, where
G is the dephasing contribution due to energy relaxation
1/T2* 52gV2 is the pure dephasing contribution.
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Both Figs. 3 and 6 show that the dephasing is not co
plete at the end of theisochores. A small change in the time
allocation in the order of 1/V can completely change th
final phase on theisochoreand on the initial phase for the
adiabat. This means that the cycle performance characteri
becomes very sensitive to small changes in time alloca
on theisochores. This effect can be observed in Fig. 7 for th
power and Fig. 8 for the entropy production. Examining F
7 reveals that increasingJ increases the ‘‘phase’’ effect. Fo
J52, for specific time allocations, the power can even b
come negative. Increasing the dephasing rate either by
ing pure dephasing or by changing the heat transfer rate
duces the ‘‘noise.’’ This can also be seen in Fig. 8. A
interesting phase effect can be observed in Fig. 9 where
cycle is displayed in the (SE ,Tdyn) plane. The inner~solid
black! cycle shows an energy-entropy decrease in the c
pressionadiabat. The reason for this decrease is a pha
memory from the compressionadiabat, which is due to the
insufficient dephasing on the coldisochore. Additional pure
dephasing eliminates this entropy decrease as can be se
the dashed black cycle. This cycle is also pushed to la
entropy values. The outer cycles are characterized b
longer time allocation on theisochores. For these cycles, the
energy entropy always increases on theadiabats. This cycle
is shifted by the dephasing to lower energy-entropy valu

FIG. 6. The modulus and phase ofL̂6 as a function of time. The
dashed lines include additional pure dephasing (gh50.01,gc

50.03). The common parameters areTh57.5, Tc51.5, Gh5Gc

50.34, vb511.8675 andva55.083, The total cycle time ist
52.4, whereth5tc51, tba50.2, tab50.2.
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VIII. DISCUSSION

Quantum thermodynamics is the study of thermodyna
cal phenomena based on quantum mechanical princi
@43#. To meet this challenge, quantum expectation val
have to be related to thermodynamical variables. The O
cycle is anab initio quantum model for which analytic solu
tions have been obtained. The principle thermodynam
variables: energy entropy and temperature are derived f
first principles. The solution of the quantum equations
motion for the stater̂ enables tracing the thermodynamic
variables for each point on the cycle trajectory. This dyna
cal picture supplies a rigorous formalism for finite-time the
modynamics@21,24#.

FIG. 7. The power produced by the engine as a function of
time allocation on the hotisochore. For the upper fluctuating curve
the cycle corresponds to J51 and Gh5Gc50.324. For the next
from the top, corresponds to the cycle withJ52 and Gh5Gc

50.324. For the lower cycle corrosponds toJ524 andGh5Gc

50.162. The three fluctuating cycles have no pure dephasinggh

5gc50. With addition of dephasinggh50.01 andgc50.03, the
noise is eliminated and the three cycles collapse to the solid li
The common parameters areTh57.5, Tc51.5, vb512.717, and
va55.382, The total cycle timet is 6.74,tba50.3,tab50.34.

FIG. 8. Entropy productionsDScycle, Eq. ~77!, as a function of
the time allocation on the hotisochore. The notations are the sam
as in Fig. 7.
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An underlying principle of finite-time thermodynamics
that the operation irreversibilities are inevitable if a proce
runs at finite rate. Moreover, these irreversibilities are
source of performance limitations imposed on the proce
The present Otto cycle heat engine in line with finite tim
thermodynamics~FTT! is subject to two major performanc
limitations:

~1! Finite rate of heat transfer from the hot bath to t
working medium and from the working medium to the co
bath.

~2! Additional work invested in the expansion and com
pression branches is required to drive theadiabatsat a finite
time.

The finite rate of heat transfer limits the maximum obta
able powerP @19#. The present Otto engine model is not a
exception, showing similarities with previous studies of d
crete quantum heat engines@5,6,10,11#.

The irreversibility caused by the finite-time duration o
the adiabatsis the main finding of the present study as w
as the preceding short letter@4#. This irreversibility is closely
linked to the quantum adiabatic condition. The nonadiaba
parameterj5v̇J/2V2, cf. Eqs.~75! and ~80!, is a measure
of the inability of the state to follow the energy frame.j
vanishes when either the change in the external field is s
v̇'0 or the internal and external Hamiltonians commuteJ
'0. The nonadiabatic irreversibility is caused by the int
play of the noncommutability of the Hamiltonian at differe
points along the cycle trajectory and the dephasing cause
coupling to the heat baths on theisochores. This is consistent
with Ref. @4# where the ‘‘friction’’ losses scaled withj2. The
nonadiabaticity can also be characterized by an increas
the modulus of̂ L̂6& on theadiabats. Dephasing, i.e., expo

e

s.

FIG. 9. The influence of dephasing on the cycle of operation
the (SE ,Tdyn) plane. Solid curves correspond to an operation wi
out pure dephasing. The dashed curves represent cycles inclu
pure dephasing. For the inner cycles, the time allocations on
isochoresare th5tc50.6. The pure dephasing parameter isgh

5gc50 for the solid lines, andgh50.005,gc50.015 for the
dashed lines. For the outer cycles, the allocated times on the is
ores areth52.,tc52.1 with gh5gc50 for the solid lines, andgh

50.01,gc50.03 for the dashed lines. The common parameters
all four cycles areJ52., Th57.5, Tc51.5, Gh5Gc50.3243, and
tab5tba50.015.
1-15
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nential decay of the modulus of^L̂6& is induced by the cou-
pling to the baths on theisochores.

The dynamics of theL̂6 operator associated with th

phase can be compared to theB̂6 operator associated wit
the internal correlation between the spins@cf. Eq. ~62!#. The

absolute value ofuB̂6u oscillates on all branches of the cyc

never reaching zero. This is not surprising sinceB̂6 does not
commute with the Hamiltonian. The ‘‘angle’’ fB

5arctan(b3 /b2) is excited for small cycle times. For cycle
with large time allocation on theisochores, fB is found to be
close to zero. These observations reflect the two type
correlations between particles. A ‘‘classical’’ correlation a
a quantum correlation meaning EPR@41,42# entanglement
between particles. The general trend is therefore for the
gine to become more classical when the cycle times bec
longer. In this case, the state follows the energy direction
in addition the entanglement between particles is small. A
ing pure dephasing has a similar effect. A continuous m
surement of energy during operation will also lead to eff
tive pure dephasing. For short cycle times, quantum effe
become important. The entropy decrease on the adia
which is the result of phase memory, is such an example.
quantum effect, which influences the performance, is the
cess work on theadiabatdue to the inability of the state to
follow the energy direction.
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APPENDIX: THE F̂ OPERATORS

The method of construction ofF̂j is based on identifying
the operators with the raising and lowering operators in
energy frame. The matrixC which diagonalizes the Hamil
tonian becomes:

C5S 2AV2v

2V
0 0 AV1v

2V

0 1 0 0

0 0 1 0

AV1v

2V
0 0 AV2v

2V

D . ~A1!

DenotingAV2v/2V5m, andAV1v/2V5x, the diago-
nalization of the Hamiltonian matrix becomes
01610
of

n-
e
d
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-
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ts,
e

x-

n-
a-
,

e

S 2m 0 0 x

0 1 0 0

0 0 1 0

x 0 0 m
D S v

A2
0 0

J

A2

0 0 0 0

0 0 0 0

J

A2
0 0 2

v

A2

D
3S 2m 0 0 x

0 1 0 0

0 0 1 0

x 0 0 m
D 5S 2

V

A2
0 0 0

0 0 0 0

0 0 0 0

0 0 0
V

A2

D .

~A2!

In the adiabats, the energy frame is time dependent, the
fore the equation of motion contains an additional genera

Le~ r̂e!52CĊr̂e2r̂eĊC5 i
v̇J

2V2
@B̂3 ,r̂e#. ~A3!

On the isochoresĥ is time independent. The lowerin
transition ratesk↓ are chosen to be equal for all the fou
transitions, while the raising transitionsk↑ comply with de-
tailed balance. Schematically, the eight transitions are

F̂1 F̂2 F̂3 F̂4 F̂5 F̂6 F̂7 F̂8

E2 E2 E3 E3 E4 E4 E4 E4

⇑ ⇓ ⇑ ⇓ ⇑ ⇓ ⇑ ⇓
E1 E1 E1 E1 E2 E2 E3 E3. ~A4!

Detailed presentation of a few Fˆ i operators

The F̂ operator for the transitionE1 to E2 is F̂1\2[F̂1. In
the energy picture, it is simply:

F̂15Ak↓S 0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0
D . ~A5!

Using the matrixC to transform back to the polarization pic
ture leads to
1-16
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F̂15Ak↓S 2m 0 0 x

0 1 0 0

0 0 1 0

x 0 0 m
D S 0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0
D

3S 2m 0 0 x

0 1 0 0

0 0 1 0

x 0 0 m
D 5Ak↓S 0 0 0 0

2m 0 0 x

0 0 0 0

0 0 0 0
D
~A6!

Thus,F̂1
† will be

F̂1
†5Ak↓S 2m 0 0 x

0 1 0 0

0 0 1 0

x 0 0 m
D S 0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0
D

3S 2m 0 0 x

0 1 0 0

0 0 1 0

x 0 0 m
D 5Ak↓S 0 2m 0 0

0 0 0 0

0 0 0 0

0 x 0 0
D .

~A7!

Using a similar procedure, all theF̂i in the polarization pic-
ture become

F̂15F̂1→25Ak↓S 0 0 0 0

2m 0 0 x

0 0 0 0

0 0 0 0
D , ~A8!
ur

J

01610
F̂25F̂2→15Ak↑S 0 2m 0 0

0 0 0 0

0 0 0 0

0 x 0 0
D , ~A9!

F̂35F̂1→35Ak↓S 0 0 0 0

0 0 0 0

2m 0 0 x

0 0 0 0
D , ~A10!

F̂45F̂3→15Ak↑S 0 0 2m 0

0 0 0 0

0 0 0 0

0 0 x 0
D , ~A11!

F̂55F̂2→45Ak↓S 0 x 0 0

0 0 0 0

0 0 0 0

0 m 0 0
D , ~A12!

F̂65F̂4→25Ak↑S 0 0 0 0

x 0 0 m

0 0 0 0

0 0 0 0
D , ~A13!

F̂75F̂3→45Ak↓S 0 0 x 0

0 0 0 0

0 0 0 0

0 0 m 0
D , ~A14!

F̂85F̂4→35Ak↑S 0 0 0 0

0 0 0 0

x 0 0 mD . ~A15!
0 0 0 0
pl.
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